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Cognitive and MRI trajectories 
for prediction of Alzheimer’s 
disease
Samaneh A. Mofrad1,3*, Astri J. Lundervold2, Alexandra Vik3 & Alexander S. Lundervold1,3

The concept of Mild Cognitive Impairment (MCI) is used to describe the early stages of Alzheimer’s 
disease (AD), and identification and treatment before further decline is an important clinical task. 
We selected longitudinal data from the ADNI database to investigate how well normal function (HC, 
n= 134) vs. conversion to MCI (cMCI, n= 134) and stable MCI (sMCI, n=333) vs. conversion to AD (cAD, 
n= 333) could be predicted from cognitive tests, and whether the predictions improve by adding 
information from magnetic resonance imaging (MRI) examinations. Features representing trajectories 
of change in the selected cognitive and MRI measures were derived from mixed effects models and 
used to train ensemble machine learning models to classify the pairs of subgroups based on a subset 
of the data set. Evaluation in an independent test set showed that the predictions for HC vs. cMCI 
improved substantially when MRI features were added, with an increase in F

1
-score from 60 to 77%. 

The F
1
-scores for sMCI vs. cAD were 77% without and 78% with inclusion of MRI features. The results 

are in-line with findings showing that cognitive changes tend to manifest themselves several years 
after the Alzheimer’s disease is well-established in the brain.

Ageing is associated with cognitive changes characterised by phenotypic diversity in both pace and severity. This 
diversity is a result of the many biological and life-style factors influencing an individual throughout his or her 
life-time1,2. Some individuals preserve their cognitive function into old age, so-called “superagers”3, while others 
experience a decline at a younger age due to a neurodegenerative  disease4. Along this wide dimension of cognitive 
function, it becomes difficult to define the fine line between normal and pathological ageing.

Alzheimer’s disease (AD) is a common neurodegenerative disease characterised by a cognitive impairment 
that gradually worsens over  time5. A lot of effort has been put into the identification and development of treat-
ment options that can stop this degenerative process at an early stage. Early on, the cognitive symptoms tend to 
be minor and the condition is referred to as a Mild Cognitive Impairment (MCI)6. Not all patients with MCI will 
develop AD. Although studies have shown that a patient with MCI has up to a tenfold increased risk to develop 
the  disease4,7, a subgroup of individuals with MCI are left with a stable condition or may even revert to normal 
 function8. The search for predictors of conversion from MCI to AD is therefore an important field of  research6,9.

Impaired performance on psychometric tests of memory  function10,11 and on more global measures of cog-
nitive  function9 have been recognized as early cognitive predictors of AD. However, this impairment tend not 
to be uncovered until years after the condition is well-established in the  brain12. This is documented by several 
previous studies relating early changes in cognitive function to changes in specific regions and structures of the 
brain, including an expansion of the ventricles and volume loss in the hippocampus and entorhinal  cortex13,14. A 
more precise prediction of AD is therefore expected if information from results on cognitive tests are combined 
with information from magnetic resonance imaging (MRI) of the  brain15,16.

The present study was motivated by the challenge to predict AD at an early stage of the disease. Based on 
data available from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) we investigated how well a set of 
machine learning models could predict conversion from normal function through MCI to AD. In a first set of 
analyses we defined features characterising longitudinal changes in memory function (Rey Auditory Learning 
Test (RAVLT))11 and in a more global measure of cognitive function (ADAS-Cog-13 (ADAS13))9,17. Expecting 
more precise predictions by including information from MRI  examinations15,16, we investigated the add-on 
effect of including morphometric brain measures associated with memory function (entorhinal cortex and 
 hippocampus14) and a global measure of cognitive function (the volume of the ventricles as a proxy for a global 
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tissue  loss18). More specifically, we used a pipeline proposed by Mofrad et al.19 based on a combination of mixed 
effects and machine learning models for analysis of longitudinal data. This approach is useful when faced with 
a set of subjects with a varying number of scans and test results, examined at different time intervals. This is a 
common challenge in longitudinal studies, including studies based on the ADNI dataset.

Materials and methods
Data set. Data were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database 
(http://adni.loni.usc.edu). The ADNI was launched in 2003 as a public-private partnership, led by Principal 
Investigator Michael W. Weiner, MD, with an overall goal to validate biomarkers for use in clinical treatment 
trials for patients with AD. The study was approved by the Institutional Review Boards at each ADNI site (see 
full list here: http://adni.loni.usc.edu). Informed consent was obtained from all subjects prior to enrollment. All 
methods were carried out in accordance with relevant guidelines and regulation. The present study was approved 
by ADNI Publication Committee (ADNI DPC).

In the present study we included subjects from the ADNI dataset defined as cognitively normal (CN) or as 
patients with an MCI or AD diagnosis. According to the ADNI protocol, MCI was defined if a participant or 
caregivers reported cognitive problems, if the patient showed impairment on the logical memory-II subtest from 
Wechsler memory scale-R, a mini-mental state examination score equal to or above 24, and a clinical dementia 
rating = 0.5. None of the participants with MCI should meet the diagnostic criteria for dementia. AD was diag-
nosed according to the NINCDS-ADRDA Alzheimer’s Criteria for probable AD (see http://adni.loni.usc.edu/
metho ds/docum ents for details).

We defined four subgroups from the ADNI sample, with a restriction to subjects with MRI scans at least at 
two time-points and results on two selected psychometric tests of cognitive function. We labelled subjects as 
healthy controls (HC) if they were classified as CN at all ADNI visits. The subjects who converted from CN to 
MCI during the observation period were labelled converted MCI (cMCI). Subjects who were defined with MCI 
at all visits were labelled stable MCI (sMCI) and those converting from MCI to AD were labelled converted AD 
(cAD) (see Table 1). We balanced the number of subjects in each pair of subgroups, (HC, cMCI) and (sMCI, 
cAD), controlling for age and gender, and ended up with a total of 934 subjects. See Tables  2 and 3 for details.

Cognitive and MRI measures. 
The RAVLT was included as a measure of memory function. In this test, the participants are asked to recall 
words from a list of 15 nouns immediately after each of five learning trials and after a short and a long delay. 
Two measures known to be sensitive to cognitive changes in patients with  AD11 were included in the present 
study: Immediate recall (RAVLT-Im): the number of correct responses across the immediate recall of the five 

Table 1.  The original ADNI labels and the longitudinal labels used in the present study. a The sAD subgroup 
was not included in the present study as we focused on converters.

Labels in ADNI and our longitudinal labels

Labels Subgroup Description

ADNI

CN Cognitively normal at visit

MCI Mild cognitive impairment at visit

Dementia Alzheimer’s disease at visit

Our study

HC CN at all visits

cMCI Initially CN but later converted to MCI

sMCI MCI at all visits

cAD Initially MCI but later converted to AD

sADa Dementia at all visits

Table 2.  Total number of subjects, T1-weighted MR images, and gender distribution within each of the four 
subgroups. The table also shows the average number of MRI scans (mri) and cognitive tests (cog) per subject, 
available in each subgroup, and the average time (in years) between the MRI scans and cognitive tests per 
subgroup.

Information about the subgroups

Subgroups #Subjects #Images Gender (f/m) Average #visits (mri/cog) Average time (mri/cog)

HC 134 642 57/77 4.8/6.0 0.58/0.78

cMCI 134 731 55/79 5.5/7.0 0.62/0.80

sMCI 333 1696 143/190 5.1/6.0 0.48/0.63

cAD 333 1871 130/203 5.6/6.5 0.53/0.62

ALL 934 4904 385/549 5.3/6.3 0.54/0.67

http://adni.loni.usc.edu
http://adni.loni.usc.edu
http://adni.loni.usc.edu/methods/documents
http://adni.loni.usc.edu/methods/documents
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learning trials; percent forgetting (RAVLT-PF): the score on the fifth learning trial minus the score on the long 
delayed recall, divided by the score obtained on the fifth learning trial. The lower the scores, the more severe 
impairment of cognitive function.

The ADAS13 was included as a global measure of cognitive function. ADAS13 is a test battery developed to 
assess severity of cognitive impairment associated with AD and includes subtests and clinical evaluations assess-
ing memory function, reasoning, language function, orientation and praxis. The ADAS13 is a modified version 
of the original ADAS-Cog-1120, adding a cancellation task and a delayed free recall  task21. The higher the scores, 
the more severe impairment of cognitive function.

We used Freesurfer v.6.022 to derive measures from the T1-weighted MR images, extracting the lateral ven-
tricle volumes, the volumes of the hippocampus and the thickness of the entorhinal cortex in the left and right 
hemisphere. To reduce the effect of individual and gender differences in brain sizes, the volumes were normalized 
using a total intracranial volume measure estimated by Freesurfer (eTIV).

Figure 1 shows the age-dependent volume changes in the hippocampus (left hemisphere) and ADAS13 test 
scores across age. The severity of the volume loss and impairment on the ADAS13 are gradually increased from 
the HC through MCI to AD in the ADNI dataset. Figure 2 illustrates that the more severe scores in patients with 
AD compared to the other groups are found in both males and females, with a trend towards higher scores (i.e., 
better results) in females than males on the memory test in the CN and the MCI groups. Means and standard 
deviations for the RAVLT and the ADAS13 test scores are presented in Table 3.

Features. To construct subject specific trajectories for each measure we used linear mixed effects  models23,24, 
a class of models able to produce regression models from dependent  variables25. Our models are based on the 
one presented  in24 and similar to the ones employed in our previous  works19,26. As the ventricles show quadratic 

Table 3.  Means and standard deviations of age, education level, and scores on the included cognitive tests for 
each subgroup, given separately for the training and test sets. The information for the converted subgroups 
(cMCI and cAD) is calculated after removing the measurements from point of conversion and onward. The 
p-values for pairs of subgroups are presented separately for females and males; ∗: p < .05; ∗∗: p < .01; ∗ ∗ ∗: p < 
.001; −non-significant at 0.05 level.

Variables

Subgroups p-values

HC cMCI sMCI cAD (HC-cMCI)/(sMCI-cAD)

Age

Train (f/m) 77.4±7/77.7±7 75.2±7/77±7 75.2±8/77±7 75.6±8/77.6±7 (∗ ∗ ∗/−)/(− /−)

Test (f/m) 77.2±7/78.3±6 76.6±9/77.2±6 72.6±6/76±7 72.3±8/77.2±7 (−/−)/(−/−)

Education

Train (f/m) 15.1±3/ 17.5±2 16±2/17±2 15.6±3/16.5±3 15.1±3/16.2±3 (∗ ∗ ∗/∗ ∗ ∗)/(∗∗/−)

Test (f/m) 16.1±3/17.2±3 17±2/15.8±4 13.1±3/15.8±3 15.9±3/16.4±3 (∗/∗∗)/(∗ ∗ ∗/∗)

RAVLT-Im

Train (f/m) 47.4±10/43.8±11 47.3±10/39.6±10 38.7±11/33.2±10 29.4±9/28.2±7 (−/∗)/(∗/∗)

Test (f/m) 48.3±8/40.8±8 51.3±14/35.5±7 38.4±12/32.8±10 30.1±10/26.4±6 (−/∗ ∗ ∗)/(∗ ∗ ∗/∗ ∗ ∗)

RAVLT-PF

Train (f/m) 30.8±27/36±30 33.1±26/43±27 54.7±33/58.4±32 81.8±28/77.1±27 (−/∗∗)/(∗ ∗ ∗/∗ ∗ ∗)

Test (f/m) 31.4±25/35.9±25 33.8±28/48.3±29 51.9±35/56.1±32 81.6±30/81.4±25 (−/∗∗)/(∗ ∗ ∗/∗ ∗ ∗)

ADAS13

Train (f/m) 8.2±4/9.9±5 8.6±4/10.9±5 14.3±7/15.3±7 21.8±7/19.7±6 (−/∗∗)/(∗ ∗ ∗/∗ ∗ ∗)

Test (f/m) 8.1±4/8.1±3 8.3±5/12.2±3 13.8±8/15.7±6 22.1±7/20.4±6 (−/∗ ∗ ∗)/(∗ ∗ ∗/∗ ∗ ∗)

Figure 1.  Mean values for (a) the volume of the left hippocampus, and (b) the ADAS13 score over age, based 
on the cross-sectional ADNI labels.
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cohort behaviour (Fig. 5), likely caused by the accumulation of cerebrospinal fluid due to atrophy in multiple 
brain regions, we used linear mixed effects models both with and without a quadratic covariate term:

where c denotes the brain region or cognitive test score, Mc
ij is the measurement of volume of region c or score 

of cognitive test c for subject i = 1, . . . ,N at referral j = 1, . . . , ni . ni is the number of MRI scans or cognitive 
tests for subject i. Ageij is age of subject i at referral j. Age is the only predictor variable in the mixed model. 
The βc

0 , β
c
1 , and βc

2 are fixed effect parameters while bc0i , b
c
1i , and bc2i are random effect parameters. ǫcij denotes the 

random residual errors.
For constructing the mixed effects models we used the mixedlm function from the statsmodels Python 

library (v. 0.9.0). For each cognitive and MRI measure we derived the following features for each subject: (i) 
r-slope: the model-based random effects slope, thus taking the cohort effects for all subjects, and duration of 
study for each individual into account (the slope of the red lines in Fig. 3a). For both the linear model (Eq. 1) 
and the quadratic mixed models (Eq. 2), r-slope is bc1i , but for the Eq. 2 we used the coefficient of the quadratic 
term, bc2i , as an additional feature. (ii) dev: the distance (deviance) between the random effect line and the fixed 
effect line at the first time point ( Mi1 − (β0 + β1Agei1) ), thus taking the results at entry point into account (green 
dashed lines in Fig. 3a); (iii) d-slope: the slope obtained by dividing the difference of the measure at the first and 
last measurements by the duration between them, i.e. the slope of change from the first to the last measurement:

(1)
Mc

ij =βc
0 + βc

1Ageij
︸ ︷︷ ︸

fixed effect

+ bc0i + bc1iAgeij + ǫcij
︸ ︷︷ ︸

random effect

,

(2)
Mc

ij =βc
0 + βc

1Ageij + βc
2Age

2
ij

︸ ︷︷ ︸

fixed effect

+ bc0i + bc1iAgeij + bc2iAge
2
ij + ǫcij

︸ ︷︷ ︸

random effect

,

(3)d − slopei =
Mini −Mi0

Ageini − Agei0

Figure 2.  Box plot showing the gender specific results on RAVLT immediate recall and the ADAS13 for each of 
the longitudinal labels defined for the present study (Table 1).

Figure 3.  (a) Trajectories of age-related changes in a volumetric MRI measure (i.e., left-hippocampus) and 
random effects in four subjects for each of the four subgroups. The distance between the cohort effect and 
random effect (dev) of each subject (the green vertical lines) was included as one of the features in our statistical 
models. (b) The time-span was different between the participants in the present study. The change in ROI 
volume may therefore be the same for a participant with a short and long participation time, here illustrated by 
the red and blue line, respectively. The d-slope feature is included to capture this  phenomenon19.
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where Mi0 and Mini are the measurement at the first and last visits for subject i, respectively. This slope was used 
because identical changes in brain measurements or test scores can occur over different time spans, and the 
period of participation in the study varies for different  subjects19 (Fig. 3b). We also added sex and age at last visit 
(Current-Age) before conversion, if applicable (MCI in cMCI, and AD in cAD), as features for the predictive 
models.

Machine learning models and feature importance. We investigated the following experiments: 

1. Classifying subjects with stable MCI (sMCI, n = 333, f/m = 143/190) vs. those who converted from MCI to 
AD (cAD, n = 333 , f/m = 130/203).

2. Classifying healthy controls (HC, n = 134 , f/m = 57/77) vs. those who converted from being a healthy control 
to MCI (cMCI, n = 134 , f/m = 55/79).

No features based on information from the point of conversion and onward were made available to the models, 
as they were tasked with making predictions about future diagnostic status.

In mixed effects models each group (i.e. each subject) influence the fixed effect model, and therefore impacts 
all the other subjects’  trajectories27. To avoid data leakage caused by the resulting influence on the derived 
features, we put aside a test set containing 20% of the subjects before creating the mixed effects models. We bal-
anced the number of subjects in each class and controlled for gender and age. No subjects were present in both 
the train- and test set.

We trained an ensemble model based on a soft voting strategy, i.e. based on a weighted vote taking the mod-
els assigned probabilities into account, containing the following five models: logistic regression, support vector 
machine, K nearest neighbors, random forest, and a gradient boosting model. We used an ensemble approach 
as this tend to result in more robust classifiers that are less reliant on specific properties in the data set when 
compared to single  classifiers28,29. We used confusion matrices, precision, recall and F1 scores to assess our models 
during development and hyperparameter selection, using subject-level, leave-one-out cross-validation on the 
training set. For each model we set up a grid search through hyperparameters to select models that generalized 
well. For the logistic regression model we evaluated whether to include l2 penalty and the strength of regulariza-
tion. For the support vector machine model we assessed various kernels (polynomial, sigmoid and radial basis 
function), the kernel coefficient and regularization parameter. For the K nearest neighbor model we tried multiple 
combinations of the number of neighbors and distance metrics. For the random forest model we searched for a 
good combination of the number of trees and the maximum tree depth allowed, while for the gradient boosting 
model we searched through both complexity and sampling parameters. To ensure fair comparison among the 
models trained on different sets of features, we ran new grid searches for each feature set.

To evaluate the feature importance in the classification model, we used permutation importance, also called 
mean decrease accuracy, as implemented in the ELI5 Python library. This is a data-driven approach to feature 
importance, based on measuring the decrease in model accuracy when randomly shuffling each feature sepa-
rately multiple times (we used five trials for each feature). The idea is that the negative impact on performance 
of permuting an important feature is larger than for less important  features30.

Results
Experiment 1: Prediction of sMCI vs. cAD. The change in performances on the RAVLT-Im and ADAS13 
tests are illustrated in Fig. 4. Note the age-related decline in both the sMCI and the cAD subgroups, with the 
most severe impairments shown within the cAD group.

Figure 4.  The trajectories for performances on the RAVLT-Im test (a) and the ADAS13 test (b), with age at 
testing on the x-axis. The thick black curve is the cohort regression line, and thin grey lines are random effects 
for each subject. Severity of impairment is reflected by a lower score on the RAVLT test and a higher score on 
the ADAS13.
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Figure 5 illustrates age-related tissue loss in the brain, with an almost linear shrinkage of the hippocampus 
volumes (Fig. 5a) and a non-linear increase in the volume of the lateral ventricle (Fig. 5b). Overall, the most 
extensive losses are found among subjects in the cAD subgroup.

Inclusion of the cognitive trajectory features (r-slope, dev and d-slope for each test measure) in the ensemble 
model gave 77% for the accuracy, precision, recall and the F1 scores. These scores changed to 77% , 76% , 80% and 
78% , respectively, when the longitudinal MRI features were added. The confusion matrices in Fig. 6 show a mis-
classification rate of 23% for the subjects in both the cAD and the sMCI group when only the cognitive features 
were included, with a reduction to 20% for the cAD subgroup and an increase to 26% in the sMCI subgroup 
when the MRI features were added.

To further study these findings we performed a 15-fold cross validation experiment on the training data 
set, controlling for labels, age, and gender in the hold-out folds. The classifier trained on only cognitive features 
obtained a mean accuracy of 76%± 4% and the MRI features resulted in mean accuracy of 77%± 3.7% . Note 
that the models tested on the original hold-out test set were optimized based on leave-one-out cross validation 
over the entire training data set.

The part a) of Fig. 7 shows the weights of the features in our model classifying sMCI vs. cAD. The model-based 
random slope (r-slope) of the ADAS13 trajectory provided the strongest weight among the cognitive features. 
When the MRI features were included in the analysis, the weight of ADAS13 decreased substantially, and became 
stronger for features characterising the entorhinal cortex (d-slope and dev-RH entorhinal).

Experiment 2: Prediction of HC vs. cMCI. With the longitudinal cognitive features as inputs to our 
ensemble model, we obtained an accuracy, precision, recall and F1 score of 62% , 62% , 58% and 60% , respectively. 
Adding the MRI features increased the accuracy, precision, recall and F1 scores to 77% for all. The part a) of the 
confusion matrix in Fig. 8 shows a somewhat lower misclassification rate for HC subjects ( 35% ) than for cMCI 
( 42% ) subjects when only the cognitive features were included in the analysis. The rate decreased to 23% for both 
subgroups when the MRI features were added (Fig. 8b).

Figure 5.  The trajectories for the normalized volumes of the hippocampus and the lateral ventricle in the left 
hemisphere with age at scan at the x-axis. The thick black curve is the cohort regression line, and the thin grey 
lines are random effects for each subject.

Figure 6.  Confusion matrices for classification of sMCI vs. cAD from the cognitive features (a) and the 
combination of MRI and cognitive features (b).
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To assess the robustness of the findings we again performed a 15-fold cross validation experiment on the 
training data. The classifier trained on only cognitive features gave a mean accuracy of 56%± 6% , while the MRI 
features resulted in mean accuracy of 61%± 5.7%.

The part (b) of Fig. 7 shows the feature importance for our model classifying HC vs. cMCI. The model-based 
random slope (r-slope) from a measure of memory function (RAVLT-PF) provided the strongest weight among 
the cognitive features. When the MRI measures were included, the d-slope of the entorhinal cortex in the left 
hemisphere and a measures of immediate memory function (dev-RAVLT-im) showed the strongest weights.

Discussion
The present study used mixed effects models to define features characterising individual trajectories of change 
in a set of cognitive and MRI measures. These features were then used as predictors to classify subgroups with 
stable MCI (sMCI) vs. converters to AD (cAD) in one experiment, and to classify subgroups of healthy controls 
(HC) vs. converters to MCI (cMCI) in a second experiment. Visual inspections showed an age-related decline 
in cognitive performance and volumetric MRI measures in all subgroups. Using the features to train ensemble 
machine learning models gave classifications that were clearly better than chance level. For the prediction of 
sMCI vs. cAD, the mean classification F1-score was 77% when only the features characterising the trajectories 
of cognitive changes were included, with only one percentage point improvement when the MRI features were 
added. When restricted to the cognitive features, the model-based slope of the ADAS13 trajectory was given a 
relatively strong weight, while it was dramatically reduced and outperformed by features characterising the vol-
ume change in the entorhinal cortex when information from MRI was added. For the HC vs. cMCI predictions, 

Figure 7.  Feature weights when classifying sMCI vs. cAD (a) and HC vs. cMCI (b), based on cognitive features 
(in red) and the combination of MRI and cognitive features (in blue). For convenience, the plots only show a 
selection of the most important features after adding the MRI features to the analyses. Weights near zero and 
features for which the permutation importance had standard deviations greater than the estimated mean weight 
are not plotted. The most important features, when predicting from only the cognitive tests, were kept in the plot 
to illustrate the main changes observed after adding the MRI features.

Figure 8.  Confusion matrices for classifying HC vs. cMCI from cognitive features (a) and the combination of 
cognitive and MRI features (b).



8

Vol:.(1234567890)

Scientific Reports |         (2021) 11:2122  | https://doi.org/10.1038/s41598-020-78095-7

www.nature.com/scientificreports/

the F1-score was substantially improved from 60% to 77% when the MRI features were included. Among the 
cognitive features, a feature characterising change in memory function was given the strongest weight, followed 
by ADAS13. When the MRI features were added, information about the changes in the volume of the entorhinal 
cortex, hippocampus and the immediate memory function were given the strongest weights. The confusion 
matrices showed results above chance level, with the largest drop in misclassification rate when both the cogni-
tive and MRI features were included.

The results confirmed the expected age-related change in cognitive function. Furthermore, the weight given to 
longitudinal features of memory function (in the HC vs. cMCI experiment) supports the sensitivity of memory 
tests to the early symptoms of a path leading towards a neurodegenerative  disorder10,11, and that symptoms of an 
amnesic MCI may indicate a high risk of a path towards  AD6. In a stage closer to an AD diagnosis, the results on 
a more global measure of cognitive function (ADAS13)9 are given stronger weight. Still, the contribution from 
MRI measures was substantial when classifying HC vs. cMCI. The design of the present study was inappropriate 
for identifying the exact time-point where information about MRI measures would increase the accuracy of the 
prediction. However, the results are still in line with studies showing that cognitive changes associated with AD 
tend to manifest themselves several years after the condition is well established in the  brain12. The importance 
of the trajectory of change in the volume of the entorhinal cortex is also worth a comment. Entorhinal cortex 
acts like a relay station, with widespread connections to cortical and subcortical  areas31. Several studies have 
documented that volume changes in the entorhinal cortex can be detected in an early stage of AD, and that there 
are strong correlations between different parts of the entorhinal cortex and memory  function32. The present study 
should therefore be followed by studies on the predictive values of subcomponents of entorhinal, hippocampus 
and other related brain structures.

Although we obtained correct classifications above chance level, the misclassifications are too high to enable 
prediction on an individual level from the selected features. For converters to MCI, consideration should be 
given to the high number of individuals misclassified as healthy controls when the algorithms were based only on 
cognitive features. This illustrates the challenge in defining the fine line between healthy and pathological cogni-
tive ageing, and the phenotypic diversity characterising the group of patients with  MCI1,2,33. Furthermore, it may 
also reflect a limitation of the ADNI protocol. Although MCI is defined from the presence of subjective memory 
complaints, objective memory impairment, normal general cognitive function and intact activities of daily liv-
ing/absence of dementia, studies have described heterogeneous subtypes, including a subgroup demonstrating 
intact cognitive  function34 and MRI  findings35. The prediction was more accurate for classification of patients 
converting to AD than in those with a stable MCI. This indicates the challenge in classifying an individual as 
AD, a diagnosis that is only definite after a post-mortem  confirmation5. Future studies including such a definite 
outcome measure are therefore warranted.

The high number of participants included in the present study and the inclusion of predictive models and 
methods from modern machine learning  frameworks36 are main strengths of the present study. The results in the 
study must, however, be interpreted in the light of several limitations. As already mentioned, this includes how 
we defined the subgroups. Inclusion of a small number of cognitive and MRI measures among the ones available 
in the ADNI dataset is another limitation. We have not provided sufficient information to specify whether the 
impairments in the MCI group affect single or multiple cognitive domains. And even the ADNI dataset miss out 
some important  biomarkers37 and information about cognitive reserve factors (e.g.38,39), factors that certainly 
are essential to understand the phenotypic diversity of trajectories from normal function to AD. The results are 
also restricted by our analytic approach. The choice of models not only influence the predictive performance, 
but also the feature weights indicating feature importance. Furthermore, as the method used to assess feature 
importance is based on permuting single features, it doesn’t give a precise way to assess how combinations of 
features are weighed by the models. Finally, information about mean time between MRI scans and cognitive 
testing and number of visits, presented in Table 2, was not controlled for in the statistical models.

Conclusion
We showed that a set of mixed effects-derived features from psychometric tests of cognitive function and an MRI 
examination gave predictions of healthy controls vs. MCI and stable MCI vs. AD that were above chance level. 
The results confirmed the importance of early changes in memory function and the role of entorhinal cortex as 
an imaging-based biomarker of normal and pathological ageing in older adults. Our major contributions are the 
application of (i) measures from the rich ADNI dataset, (ii) features defining trajectories of change in relevant 
cognitive and MRI measures, and (iii) a data-driven machine learning approach to assess the measures’ weights 
in classification models. Future studies should further investigate this avenue of brain-behaviour relationships 
in older age. They should consider inclusion of the wider range of  genetic40 and  environmental41 variables, and 
thus probably reduce the misclassifications shown in the present study, as well as other predictive models and 
methods within modern machine learning  frameworks36,42.
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